A joint research program NTNU / SINTEF / MIT / Chalmers 2004 - 2008

Dr. Bjorn H. BakkenEnergy Systems
SINTEF Energy Research
Trondheim, Norway

email: bjorn.h.bakken@sintef.no

Objectives

- Outline and evaluate likely technology portfolios, deployment paths and policy options to meet future energy service needs in a cost-effective and sustainable manner in a liberalized energy market environment
- Create an international arena for dissemination of results, dialogue and exchange of ideas in order to gain a swifter transition to sustainable energy services
- Provide a toolbox of computational tools, methods and databases for analysis and decision support under uncertainty
- PhD education and long-term scientific cooperation between the institutions involved

Sponsors

- Project idea created by Norsk Hydro, The Industry's Innovation Fund at NTNU and Dept. of Energy and Process Engineering, NTNU
- Current sponsors:
 - Norsk Hydro
 - Norske Shell
 - Statoil
 - Statkraft (Norw. State Power Company)
 - Statnett (Norw. Grid Company)
 - Statsbygg (Norw. State Building Operator)
 - Enova (State agency for energy efficiency and renewable energy)
 - **...**

Scientific partners

- The Department of Energy and Process Engineering, NTNU
- The Department of Electrical Power Engineering, NTNU
- The Department of Architectural Design, History and Technology, NTNU
- SINTEF Energy Research
- The Laboratory For Energy and the Environment (LFEE) at MIT
- The Department of Energy Technology, Chalmers
- Others....?

PhD Studies

- A number of coordinated PhD studies and possibly PostDoc postitions will be initiated at the different participating institutions. Suggested themes are:
 - Decision support under uncertainty
 - Efficient energy use / Building technology
 - The end users role and behaviour
 - Emissions trading and green certificates
 - Hydrogen as future energy carrier
 - CO₂ free technology
 - Life Cycle Assessment
 - **...**

Samples of TRANSES challenges

1. Clean Nordpool

Can market mechanisms be utilized to gain a swifter transition to sustainable energy services?

2. Rational Regulation

What set of regulations on economic, environmental and other aspects provides the best incentives to industry and consumers?

3. Efficient Utilization

- What role can new technology play, and in which time perspective?
- The end-users role, his needs and his behaviour are included in this evaluation

4. Coordinated Carriers

How can different energy carriers and energy technologies be coordinated in the economically and environmentally best way possible?

TRANSES analytical framework

TRANSES – current activities (first year)

- Identify adequate analytical tools
 - Preliminary studies with EMPS model and MIT Trade-off
 - New or existing models and methodologies
- Input data and assumptions
 - Current system, new resources, technological alternatives, macroeconomic trends etc.
- Establishing efficient ways of cooperation between participating institutions
 - Core activities in Trondheim, Norway
- Employing PhD students
- Establish stakeholder group
 - Initial stakeholder meetings
 - Extend the funding for the project

Scandinavia – an ideal region for analysis

- All major energy resources/technologies present
 - Hydro, nuclear, coal, oil, gas, biomass, wind, ...
- Limited geographical scope
 - Norway, Sweden, Finland and Denmark
 - Limited connections to neighboring countries
 - Transparency (data availability)
- Market and competition
 - Common liberalized power market (Nord Pool)
 - Emerging European gas market
 - Emerging "green certificate" markets:
- Good region for experimenting with new planning models and methodologies

Electricity Generation in Nordel 2002 (TWh)

Generation capacity vs. consumption 1976 - 2001

Demand uncertainties

Driving forces for growth in electricity demand

- Substitution of oil to electricity
- Increased comfort (kWh/m²)
- Increased activities (m² and NOK)
- Domestic changes (m² per capita)

Uncertainties in demand

- Development of district heating
- Development of natural gas
- Development of hydrogen
- etc.

NOU 1998:11

Electricity demand scenarios

Energy system analysis at SINTEF Energy Research

Overview of talk

- Introduction to SINTEF
- Planning of Distribution Systems with Multiple Energy Carriers
- TRANSES Alternatives for the Transition to Sustainable Energy Services in Northern Europe
- Multi-area Power Market Simulator EMPS
- Utilisation of transmission system capacity
- Integration of local energy sources by power electronic converters

Multi-Attribute Trade-Off Analysis (1)

- TRANSES: Not just another scenario study!
- Scenario-Based Multi-Attribute Trade-off Analysis
 - Scenario planning approach developed to facilitate dialogue and learning among multi-stakeholder audiences
 - Graphical presentation of trade-offs
 - Large Number of Technological Options
 - Multi-Option Strategies
 - Large Number of Uncertainties
 - Multiple Futures (fuel prices, demand etc.)
 - Large Number of Goal States/Attributes
 - Multiple Stakeholders, Conflicting Goals
- MIT has extensive experience in applying Multi-Attribute Trade-Off Analysis
 - New England, Switzerland, Shandong (China),

Multi-Attribute Trade-Off Analysis (2)

Source: SR Connors, MIT

Multi-Attribute Trade-Off Analysis (3)

Features

- Helps facilitate stakeholder dialogues
- Identifies "Good" and "Bad" strategies
- Identifies competing/complementary sets of options
- Recognizes different "Deployment Schedules" of different options
- Identifies "Robust/Flexible" versus "Optimal" strategies

Supported by

- Simulation and optimisation tools
 - E.g. EMPS model, Markal, Prosym, others
 - "Analytical package" still to be determined
- Stakeholder workshops
 - Emphasize stakeholder interaction and dialogue

Challenges

- Market aspect
 - Decentralised planning, multiple decision makers
- Consistent representation of investments
 - Market driven, high risk

Energy products of Norway 2001

Energy consumption in Norway 1970 - 2001

Residential electricity consumption

in Norway (%)

Space heating	41
Hot water	24
Lighting	11
Cooling	8
Cooking	4
Washing	3
Drying	2
Other equipment	7

Annual increase in generation and consumption 1960 - 1995

Peak demand records 1990 - 2002

Exisiting demand scenarios

SINTEF 1996

- Energy +1% p.a.
- Peak power +1.2% p.a.
- NOU 1998:11
 - 'Green Brainpower' +0.8% p.a.
 - 'Climate Road' +0.2-0.7% p.a.
 - 'Steady Course' +1.3% p.a.
 - 'Long Journey Up' +1.5% p.a.
- Nordel area: +8% from 2000 to 2010

Supply options (1)

- Hydro power
 - Politically and environmentally controversial
- International electricity exchange
 - European markets?
 - Emissions trading and certificate markets?
- Conventional gas power
 - Politically and environmentally controversial
- Gas power with CO₂ removal
 - High investments and reduced efficiency
- Direct use of gas
 - Expensive infrastructure
 - Environmentally controversial

Supply options (2)

- Wind power
 - High potential, but not without problems
- District heating with renewable energy sources
 - Expensive infrastructure
- Biomass and waste
 - Currently only heat generation
 - Waste is paid fuel!
- Hydrogen
 - Promising technology
 - Expensive
 - Not an energy source!!

Demand side options (1)

- Local energy studies
 - Demand forecasts
 - Resource mapping
 - Supply and infrastructure
- Local generation
 - Utilize electricity and heat
- Heat pumps
 - Alternative for heating, but increases dependence on electricity
- Passive (thermal) solar systems
- End-user flexibility / Demand side bidding

Demand side options (2)

- Power intensive industries 30-35 TWh
 - Selling power "back" to the market
 - Increased efficiency (kWh/NOK)
- Transport sector
 - Main source of CO₂ in Norway
- Building locations
- New building codes and techniques
 - Less effect than expected
 - Slow turnover of buildings

Climate issues

- Global, regional (Europe) and national level
- Kyoto protocol
 - GHG emissions related to 1990 level
 - Joint international implementation possible
- EU directives
 - Pre-Kyoto GHG permit trading system limited to large thermal power plants
- National directives and incentives
 - Pre-Kyoto GHG permit trading system under development
- Swedish green certificate market established May 2003
 - Possible development to common Nordic market

Nordel Elspot prices 1995 - 2003

